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Abstract. We here consider an exciton i embedded in a sea of N identical excitons 0. If the excitons are
taken as true bosons, a bosonic enhancement factor N is found for i = 0. If the exciton composite nature
is kept, this enhancement not only exists for i = 0, but also for any exciton having a center of mass
momentum equal to the sea exciton momentum. This physically comes from the fact that an exciton with
such a momentum can be transformed into a sea exciton by “Pauli scattering”, i.e., carrier exchange with
the sea, making this exciton i not so much different from a sea exciton. This possible scattering, directly
linked to the composite nature of the excitons, is irretrievably lost when the excitons are bosonized.
The underlying interest of this work is in fact the calculation of the scalar products of N-exciton states,
which turns out to be quite tricky, due to possible carrier exchanges between excitons. This work actually
constitutes a crucial piece of our many-body theory for interacting composite bosons, because all physical
effects involving composite bosons ultimately end by the calculation of such scalar products. The “skeleton
diagrams” we here introduce to represent them, allow to visualize many-body effects linked to carrier
exchanges in an easy way. They are conceptually different from Feynman diagrams, because of the special
feature of the Pauli scatterings which originate from boson statistics departure.

PACS. 71.35.-y Excitons and related phenomena

1 Introduction

We are presently developing a many-body theory [1–7]
able to handle interactions between composite bosons,
such as the semiconductor excitons. The development of
this theory is highly desirable, because, in the low den-
sity limit, electron-hole pairs are known to form bound
excitons, so that, in this limit, the representation of the
system in terms of excitons is surely better than the one
in terms of free carriers. The interaction between excitons
is however a quite tricky concept due to carrier indistin-
guishability: Indeed, the Coulomb interaction between two
excitons can be taken as (Vee′ + Vhh′ − Veh′ − Ve′h) or
(Vee′ + Vhh′ − Veh − Ve′h′) depending if we see the exci-
tons as made of (e, h) and (e′, h′), or of (e, h′) and (e′, h).
Moreover, excitons interact in a far more subtle man-
ner through Pauli exclusion between their indistinguish-
able components, in the absence of any Coulomb process.
This “Pauli interaction” is actually the novel and inter-
esting part of our new many-body theory for composite
bosons. It basically comes from boson statistics depar-
ture, all previous many-body theories, designed for true
bosons or true fermions, having the corresponding com-
mutation rules set up in the first line, through the Green
function T-products [8]. In our theory, the fact that exci-
tons are not exact bosons appears through “Pauli scatter-
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ings” λmnij between the “in” excitons (i, j) and the “out”
excitons (m,n). Their link to boson departure is obvious
from their definition [2,3],

[Bm, B
†
i ] = δmi −Dmi, (1)

[Dmi, B
†
j ] = 2

∑

n

λmnij B
†
n, (2)

B†
i being the i exciton creation operator. These Pauli scat-

terings λmnij precisely read

λmnij =
1
2

∫
dre dre′ drh drh′ φ∗m(re, rh)φ∗n(re′ , rh′)

× φi(re, rh′)φj(re′ , rh) + (m↔ n), (3)

where φi(re, rh) = 〈re, rh|B†
i |v〉 is the i exciton wave func-

tion. The above expression makes clear that λmnij just
corresponds to the two possible carrier exchanges between
the two excitons (i, j), (see Fig. 1a), without any Coulomb
process: This makes λmnij a dimensionless “scattering”. It
is possible to show that, for bound states, λmnij is of the
order of VX/V , with VX being the exciton volume and V
the sample volume [6].

Although not always straightforward, it is in fact pos-
sible to write any physical quantity dealing with excitons,
through matrix elements of an Hamiltonian dependent op-
erator f(H) between N -exciton states, with most of them
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Fig. 1. Pauli scattering λmnij between the “in” excitons (i, j) and the “out” excitons (m,n). Solid line: electron; dashed
line: hole; heavy solid line: exciton. (a): λmnij , defined in equation (3), is composed of two hole exchanges, in which the
exciton indices (m, n) are inverted, so that λmnij = λnmij = λmnji. (b): A hole exchange between (i, j) leading to (n, m)
corresponds to an electron exchange between (i, j) leading to (m,n). (c): In the “Pauli diagrams” of the following figures, the
Pauli scattering λmnij will be represented by a cross. (d) and (e): When the two indices on one side are equal, the two processes
of λmnij are identical: λmn00 either corresponds to a hole exchange as in (d) or an electron exchange as in (e).

in the same state 0:

〈v|Bm1 · · ·BmnB
N−n
0 f(H)B†N−n′

0 B†
i1
· · ·B†

in′ |v〉. (4)

These matrix elements can be calculated by “pushing”
f(H) to the right in order to end with f(H)|v〉 = f(0)|v〉,
if the vacuum energy is taken as zero. This push is done
through a set of commutations. In the simplest case,
f(H) = H , we have HB†

i = B†
i (H + Ei) + V †

i , which
follows from [H,B†

i ] = EiB
†
i + V †

i , the operator V †
i be-

ing then pushed to the right, according to [V †
i , B

†
j ] =

∑
mn ξ

dir
mnij B

†
mB

†
n, to end with V †

i |v〉 which is just 0.
ξdir
mnij , given by

ξdir
mnij =

1
2

∫
dre dre′ drh drh′ φ∗m(re, rh)φ∗n(re′ , rh′)

× (Vee′ + Vhh′ − Veh′ − Ve′h)
× φi(re, rh)φj(re′ , rh′) + (m ↔ n), (5)

is the other scattering of our many-body theory [2,3]. It
corresponds to direct Coulomb processes, the “in” and
“out” excitons being made with the same pairs — while, in
λmnij , they have exchanged their carriers. Due to dimen-
sional arguments, these ξdir

mnij for bound states are of the
order of RXVX/V , with RX being the exciton Rydberg [6].

Another f(H) of interest is 1/(a−H), with a equal to
(ω+ iη) in problems involving photons. This 1/(a−H) is
pushed to the right, according to [4]

1
a−H

B†
i = B†

i

1
a−H − Ei

+
1

a−H
V †

i

1
a−H − Ei

,

(6)
which barely follows from [H,B†

i ]. Due to dimensional ar-
guments, this leads to an expansion in ξdir

mnij over an en-
ergy denominator which can be either a detuning or just
an exciton energy difference, depending on the problem at
hand.

A last f(H) of interest is e−iHt, as for problems dealing
with time evolution. We can push it to the right according
to [7]

e−iHt B†
i = B†

i e
−i(H+Ei)t +W †

i (t), (7)

W †
i (t) = −

∫ +∞

−∞

dx

2iπ
e−i(x+iη)t

x−H + iη
V †

i

1
x−H − Ei + iη

,

(8)
which follows from the integral representation of the ex-
ponential,

e−iHt = −
∫ +∞

−∞

dx

2iπ
e−i(x+iη)t

x−H + iη
. (9)

We see that, by passing f(H) over B†
i , we essentially

replace it by f(H + Ei) — as if the exciton i were not
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interacting with the other excitons — within a Coulomb
term V †

i which takes care of these interactions: f(H+Ei)
is, in some sense, the contribution of f(H), in the absence
of exciton interactions.

Once we have pushed all the H ’s up to |v〉 and gener-
ated very many Coulomb scatterings ξdir

mnij , we end with
scalar products of N -exciton states which look like equa-
tion (4) with f(H) replaced by 1. We then start to push
the B’s to the right according to equations (1, 2), to end
with B|v〉 = 0. This set of pushes now makes appearing
the Pauli scatterings λmnij .

For N = 2, equations (1, 2) readily give [2]

〈v|Bm BnB
†
i B

†
j |v〉 = δmi δnj + δmj δni − 2λmnij . (10)

For large N however, a “brute force” calculation of
N -exciton state scalar products is totally hopeless.

We expect these scalar products to depend onN and to
contain very many λmnij ’s. The amount of N they contain
is actually of major importance: Indeed, physical quanti-
ties are expected to depend on N through η = NVX/V ,
with possibly one extra N in front, for extensive quanti-
ties — the factors VX/V possibly coming from Pauli scat-
terings but also from Coulomb scatterings. However, as
the scalar products of N -exciton states are not physical
quantities in themselves, they can very well contain more
complicated terms likeNpηn which have to ultimately dis-
appear from the quantities of physical interest. To handle
these various factors N properly — and prove the can-
cellation of the superextensive terms — is thus of major
importance.

In previous works [1,5], we have studied the sim-
plest of these scalar products of N -exciton states, namely
〈v|BN

0 B
†N
0 |v〉. We found it equal to N !, as for exact

bosons, within a factor FN ,

〈v|BN
0 B†N

0 |v〉 = N !FN , (11)

which behaves as e−N O(η) [5]. In large samples, Nη can
be extremely large, even for η small, so that FN can be ex-
ponentially small. In physical quantities however, this FN

does not appear alone, but through ratios like FN−p/FN

which actually read as 1 +O(η) for p� N , so that these
quantities end by depending on η only, as expected.

The present paper in fact deals with the interplay be-
tween the possible factors N and the various λ’s which
can appear in the scalar products of N -exciton states.
These Pauli scatterings λ being the original part of our
many-body theory for interacting composite bosons, the
understanding of this interplay is actually fundamental to
master many-body effects between composite excitons at
any order in η = NVX/V , — and also to cleanly show
the exact cancellation of irrelevant superextensive terms,
which can possibly appear at intermediate stages [7].

This paper is definitely formal. It however consti-
tutes one very important piece of our many-body the-
ory, because, in order to get any physical effect involv-
ing N interacting excitons, we ultimately end by having
to calculate such scalar products. Problems involving two
excitons only [7] are rather simple to handle, because they

only use the scalar product of two-exciton states given in
equation (10). The real challenge, which today remains to
master many-body effects between N composite excitons
at any order in η, is to produce the equivalent of equa-
tion (10) for large N .

In usual many-body effects, Feynman diagrams [8]
have been proved to be quite convenient to understand
the physics of interacting fermions or bosons. We expect
the introduction of new diagrams appropriate to compos-
ite bosons, to also be quite convenient to understand the
physics of their interactions. One important aspect of the
present paper is in fact the study of these diagrams as-
sociated to possible carrier exchanges, starting from the
so-called “Pauli diagrams” in which enter the Pauli scat-
terings between two excitons, as they appear when we
use equations (1, 2). We will show that these Pauli di-
agrams turn out to be quite inappropriate, because dia-
grams appearing as very different can represent exactly
the same quantity. To understand why these topologically
different Pauli diagrams are in fact equivalent, is actually
quite necessary if we want to master carrier exchanges be-
tween composite bosons. This will be done in the last sec-
tion of the paper. The puzzling differences between these
Pauli diagrams — that we saw as a signature of their im-
propriety to describe many-body effects between compos-
ite excitons —, led us to introduce the so-called “skele-
ton diagrams” and their associated “generalized carrier
exchanges”, i.e., exchanges between more than two exci-
tons. Their appearance in a theory for composite bosons
is actually fully reasonable because, Pauli exclusion being
N -body “at once”, when it plays a role, this Pauli ex-
clusion correlates all the carriers of the excitons present,
through a process which turns out to be quite complex —
even if it is always possible to decompose it into a set of
carrier exchanges between two excitons only, as in Pauli
diagrams.

The possibility to describe carrier exchanges within
Feynman diagrams, has been addressed by Strinati and
coworkers [9,10]. The diagrams we here present are rather
different because Pauli scatterings do not have their ex-
act equivalent in Feynman diagrams: (i) These Pauli scat-
terings take care of boson statistics departure, while the
fermion or boson statistics is included in the first lines
of the usual many-body theories through the T-products
of Green functions. (ii) These scatterings are formally
equivalent to Coulomb scatterings, except that they are di-
mensionless. (iii) In the standard Feynman diagrams, ex-
change processes manifest themselves in the precise topol-
ogy of the diagrams, the intermediate states in which the
composite bosons are split, appearing explicitly through
single-particle (bare) fermionic Green’s functions (see
Eqs. (2, 11) or (2, 15) of Ref. [10]). By contrast, in our
skeleton exchange diagrams — which may look at first
rather similar to the diagrams of Figure 2 of this refer-
ence [10] — the intermediate lines are just there to visu-
alize how the “in” and “out” excitons are precisely con-
structed.

From a mathematical point of view, it is of course pos-
sible to calculate the scalar products of N -exciton states,
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Fig. 2. (a): Recursion relation for the matrix element ζN (m) defined in equation (23). The (m, 0) line alone represents δm0,
while the cross represents the Pauli scattering λmn00. Sum is taken over the intermediate exciton n. (b): Pauli diagrams for
ζN(m) obtained by iteration of Figure 2a. They allow to visualize equation (25). Sums are taken over the (unlabelled) exciton
lines. (c): The complex conjugate of ζN (i) is represented by similar zigzag diagrams, the relative position of the crosses being
just changed.

just from blind algebra, and to get the right answer. How-
ever, in order to understand the appearance of extra fac-
tors N in front of the ones in Nλ � NVX/V = η, crucial
to ultimately withdraw superextensive terms from phys-
ical quantities, it is in fact convenient to introduce the
concept of “excitons dressed by a sea of excitons”, be-
cause these extra factors N are physically linked to the
underlying bosonic character of the excitons which is en-
hanced by the presence of a sea of excitons, all in the same
state. We will show that these extra factorsN are linked to
the topology of the diagrams which represent these scalar
products and which appear as “disconnected” when extra
N ’s exist. This is after all not very surprising because dis-
connected Feynman diagrams are also known to produce
superextensive terms.

Let us introduce these “excitons dressed by a sea of
N excitons 0”, defined as

|ψ(N)
i 〉 =

BN
0 B

†N
0

〈v|BN
0 B

†N
0 |v〉 B

†
i |v〉. (12)

〈v|BN
0 B

†N
0 |v〉 is a normalization factor which makes the

operator in front of B†
i appearing as an identity in the

absence of Pauli interactions between the exciton i and
the sea of excitons 0. For the vacuum state, dressed in the

same way as

|ψ(N)〉 =
BN

0 B
†N
0

〈v|BN
0 B

†N
0 |v〉 |v〉, (13)

we just find |v〉, as expected because no interaction can
exist between the exciton sea and the vacuum. On the
opposite, subtle Pauli interactions take place between
the sea and an exciton i. By using the closure relation
1 =

∑
mB†

m|v〉〈v|Bm for one-pair states, we can write
this dressed exciton i as

|ψ(N)
i 〉 =

∑

m

AN (m, i)B†
m|v〉, (14)

AN (m, i) =
〈v|BmBN

0 B†N
0 B†

i |v〉
〈v|BN

0 B†N
0 |v〉 . (15)

Since the physics which controls the extra N ’s, is ac-
tually linked to the underlying bosonic character of the
excitons, let us first consider boson-excitons, in order to
see how a sea of N boson-excitons 0 affects them.

2 Boson-excitons dressed by a sea of excitons

For boson-excitons, equation (1) is replaced by [B̄m, B̄
†
i ] =

δmi, so that the deviation-from-boson operator Dmi is
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zero, as well as all Pauli scatterings λmnij . From this bo-
son commutator, we get by induction

[B̄N
0 , B̄

†
i ] = B̄N−1

0 [B̄0, B̄
†
i ] + [B̄N−1

0 , B̄†
i ]B̄0 = Nδ0i B̄

N−1
0 .
(16)

So that B̄N
0 B̄

†N
0 |v〉 = N ! |v〉, which shows that the normal-

ization factor FN is just 1. Consequently, |ψ̄(N)
0 〉 defined

as |ψ(N)
0 〉 with B0 replaced by B̄0, is just (N + 1)B̄†

0|v〉
while |ψ̄(N)

i�=0 〉 reduces to B̄†
i |v〉. This leads to

|ψ̄(N)
i 〉 = (Nδi0 + 1) B̄†

i |v〉. (17)

The factorN which appears in this equation is nothing but
the well known bosonic enhancement [11]. The memory of
such an enhancement must a priori exist for composite
bosons, such as the excitons. However, subtle changes are
expected, due to their underlying fermionic character. Let
us now see how this bosonic enhancement, obvious for
boson-excitons, in fact appears for exact excitons.

3 Composite excitons dressed by a sea
of excitons

From equations (1, 2), we easily get by induction

[Dmi, B
†N
0 ] = 2N

∑

n

λmn0i B
†
nB

†N−1
0 , (18)

[BN
0 , Dmi] = 2N

∑

j

λm0ji B
N−1
0 Bj , (19)

since D†
mi = Dim, while λ∗mnij = λijmn. Equation (18)

allows to generalize equation (1) as

[Bm, B
†N
0 ] = NB†N−1

0 (δm0 −Dm0)

−N(N − 1)
∑

n

λmn00B
†
nB

†N−2
0 , (20)

[BN
0 , B

†
i ] = N(δ0i −D0i)BN−1

0

−N(N − 1)
∑

j

λ00ijBjB
N−2
0 . (21)

In order to grasp the origin of the bosonic enhancement
which exists for composite excitons, let us start with the
“best case” for such an enhancement, namely an exciton 0
dressed by a sea of N excitons 0.

3.1 Exciton 0 dressed by N excitons 0

From equation (14), this dressed exciton can be written
as

|ψ(N)
0 〉 = (N + 1)

∑

m

ζN (m)B†
m|v〉 (22)

in which we have set

ζN (m) =
AN (m, 0)
N + 1

=
〈v|BN

0 BmB
†N+1
0 |v〉

(N + 1)!FN
. (23)

This ζN (m), which is just FN+1/FN � 1 + O(η) for
m = 0, will appear to be a quite useful quantity in the fol-
lowing. To calculate it, we use equation (20) forBmB

†N+1
0 .

Since Dm0|v〉 = 0, which follows from equation (1) applied
to |v〉, we readily get the following recursion relation for
the ζN (m)’s,

ζN (m) = δm0 − FN−1

FN
N

∑

n

λmn00 ζ
∗
N−1(n). (24)

Its diagrammatic representation is shown in Figure 2a and
its iteration in Figure 2b. The solution reads

ζN (m) =
N∑

p=0

(−1)pFN−p

FN

N !
(N − p)!

z(p)(m, 0), (25)

with z(0)(m, 0) = δm0, while

z(p)(m, 0) =
∑

n

λmn00

[
z(p−1)(n, 0)

]∗
(26)

is a zigzag diagram having (p+1) exciton lines, the lowest
one being (m, 0), while the p other lines are (0, 0). These
lines are connected by p Pauli scatterings which are in
zigzag, alternatively right, left, right. . . (see Fig. 2b). For
p = 1, z(p)(m, 0) is just λm000, while for p = 2, it reads∑

n λmn00λ00n0 and so on. . . Figure 2c also shows ζ∗N (i),
easy to obtain from ζN (m) by noting that λ∗mnij = λijmn,
so that ζ∗N (i) and ζN (i) are just related by a symmetry
right-left, the zigzag being inverted.

Let us discuss the appearance of factors N in this
ζN (m). If we forget about the exciton composite nature,
we drop all carrier exchanges with the sea; the electron
and hole are tight for ever as for boson-excitons, so that
we should have the same result, |ψ(N)

0 〉 � (N + 1)B†
0|v〉.

This leads to ζN (m) � δm0 at lowest order in carrier ex-
changes. Due to its composite nature, the exciton 0 can
in fact exchange its electron, or its hole, with one sea ex-
citon to become an exciton m. Since this sea exciton can
be chosen among the N excitons of the sea, this first or-
der exchange term must appear with a factor N in front.
Another sea exciton, among the (N−1) left, can also par-
ticipate to these carrier exchanges; this makes the second
order term in Pauli scattering appearing with a N(N −1)
prefactor; and so on. . .

ζN (m) thus contains the same number of factors N
as the number of λ’s. Since, for 0 and m being bound
states, these λ’s are in VX/V , while FN−p/FN reads as
an expansion in η (see Ref. [5]), ζN (m) ends by read-
ing, in the large N limit, as an η expansion, without any
extra factor N . This shows that |ψ(N)

0 〉, given in equa-
tion (22), contains the same bosonic enhancement fac-
tor (N+1) as the one of the dressed boson-excitons |ψ̄(N)

0 〉.



514 The European Physical Journal B

The relative weight ζN (0) of the B†
0|v〉 state in |ψ(N)

0 〉 —
which is exactly 1 for boson-excitons —, is however smaller
than 1 for composite excitons, due to possible carrier ex-
changes with the exciton sea. This weight in fact reads
ζN (0) = 1 − (FN−1/FN )Nλ0000 + · · · , which is nothing
but FN+1/FN as can be directly seen from equation (23).
This decrease of the weight of |ψ(N)

0 〉 on B†
0|v〉 is compen-

sated by the non-zero components onB†
m �=0|v〉 — which do

not exist for boson-excitons. Note that, since ζN (m) = 0
for Qm �= Q0, due to momentum conservation in Pauli
scatterings, the other exciton states making |ψ(N)

0 〉 must
have the same momentum Q0 as the 0 exciton one.

This leads us to conclude that the exciton 0 dressed
by a sea of N excitons 0 exhibits the enhancement fac-
tor (N + 1) of boson-excitons. By contrast to boson-
excitons, this dressed exciton however has components on
excitons i �= 0 having a momentum Qi equal to the 0 ex-
citon momentum Q0. Such a bosonic enhancement for the
composite exciton 0 is somewhat normal because excitons
are, after all, not so far from real bosons. We will now
show that a similar enhancement also exists for excitons
different from 0 but having a center of mass momentum
equal to Q0. Before showing it from hard algebra, let us
physically explain why this has to be so: From the two pos-
sible ways to form two excitons out of two electron-hole
pairs, we have shown that [2,3]

B†
iB

†
j = −

∑

mn

λmnij B
†
mB

†
n. (27)

B†
i�=0B

†
0 can thus be written as a sum of B†

mB
†
n’s with

Qm + Qn = Qi + Q0 due to momentum conservation in
the λmnij scatterings. For Qi = Q0, B

†
i�=0B

†
0 thus has a

non-zero contribution on B†2
0 , so that this exciton i �= 0,

in the presence of other excitons 0, is partly an exciton 0:
A bosonic enhancement has thus to exist for any exciton i
with Qi = Q0.

3.2 Exciton i dressed by N excitons 0

We now consider an exciton with arbitrary i. There are
essentially two kinds of such excitons, the ones with
Qi = Q0 and the ones with Qi �= Q0: Since a Qi = Q0 ex-
citon can be transformed into an exciton i = 0 by carrier
exchange with the exciton sea, the excitons with Qi �= Q0

are in fact the only ones definitely different from exci-
tons 0.

There are very many ways to calculate the component
AN (m, i) defined in equation (15), for arbitrary excitons i
and m: We can either start with [Bm, B

†
i ] given in equa-

tion (1), or with [Bm, B
†N
0 ] given in equation (20), or even

with [BN
0 , B

†
i ] given in equation (21). While these last

two ways lead to calculations essentially equivalent, the
first one may appear somewhat better, because it does not
destroy the intrinsic (m, i) symmetry of AN (m, i). These
various ways to calculate AN (m, i) must of course end by

giving exactly the same result. They however lead to dia-
grammatic representations of the scalar product AN (m, i)
which are very different. In this section, we choose to cal-
culate AN (m, i) in a way which leads to Pauli diagrams we
find to have the “nicest” topology. The discussion of the
other Pauli diagrams for AN (m, i) and the proof that they
are topologically equivalent will be given in the last part
of this work. This will lead us to introduce the skeleton
diagrams which actually are the ones “behind” all these
different Pauli diagrams.

3.2.1 Recursion relation between AN(m, i) and AN−2(n, i)

To get this recursion relation, we start with [Bm, B
†
i ] given

in equation (1). This leads to

AN (m, i) = aN (m, i) + ÂN (i,m), (28)

in which we have set

aN (m, i) = δmi − 〈v|BN
0 DmiB

†N
0 |v〉/N !FN , (29)

ÂN (i,m) = 〈v|BN
0 B

†
iBmB

†N
0 |v〉/N !FN . (30)

To follow, we calculate aN (m, i), using [Dmi, B
†N
0 ]

given in equation (18). This leads to

aN (m, i) = δmi − 2
FN−1

FN
N

∑

j

λmj0i ζ
∗
N−1(j), (31)

which is shown in Figure 3a, Figure 3b being the corre-
sponding expansion of aN (m, i) obtained by using ζ∗N (i)
given in Figure 2c. By injecting equation (25) into equa-
tion (31), this aN (m, i) reads

aN (m, i) = δmi + 2
N∑

p=1

(−1)p FN−p

FN

N !
(N − p)!

z(p)(m, i),

(32)
where z(p)(m, i) is a zigzag diagram like z(p)(m, 0), with
the lowest line (m, 0) replaced by (m, i), see Figure 3b. It
is such that

z(p)(m, i) =
∑

j

λmj0i

[
z(p−1)(j, 0)

]∗
. (33)

If we now turn to ÂN (i,m), given in equation (30), in
order to write it in terms of AN−2(n, i), we use [Bm, B

†N
0 ].

This leads to

ÂN (i,m) =
FN−1

FN
N δm0 ζ

∗
N−1(i)

− N(N − 1)
N !FN

∑

j

λmj00 〈v|BN
0 B

†
iB

†
jB

†N−2
0 |v〉. (34)

So that, using [BN
0 , B

†
j ], we end with

ÂN (i,m) = N bN (m, i)

+
FN−2

FN
N(N − 1)

∑

nj

λmj00λ00nj AN−2(n, i), (35)



M. Combescot and O. Betbeder-Matibet: Excitons dressed by a sea of excitons 515

Fig. 3. (a): Diagrammatic representation of equation (31) for aN(m, i) defined in equation (29). (b): Pauli diagrams for
aN(m, i), obtained by inserting the diagrams of Figure 2c for ζ∗ into Figure 3a. They contain 0, 1, 2, 3, . . . Pauli scatterings
represented by crosses, put in zigzag, alternatively right, left, right, . . . , m and i staying on the bottom line. Figure 3b is just a
visualization of equation (32). Here again, as in all Pauli diagrams, sums are taken over the intermediate (unlabelled) exciton
lines. (c): Other diagrammatic representation of the same aN(m, i) obtained by using [BN

0 , Dmi], instead of [Dmi, B
†N
0 ], in

equation (29).

in which we have set

bN(m, i) =
FN−1

FN
δm0 ζ

∗
N−1(i)

− FN−2

FN
(N − 1)λm000 ζ

∗
N−2(i)

=
FN−1

FN
δm0 δ0i +

N−1∑

p=1

(−1)p (N − 1)!
(N − 1 − p)!

FN−1−p

FN

×
{
z(0)(m, 0)

[
z(p)(i, 0)

]∗
+ z(1)(m, 0)

[
z(p−1)(i, 0)

]∗}
,

(36)

due to equation (25) for ζN (m).
The diagrammatic representations of equations (36)

are shown in Figure 4. From Figure 4a, which represents
the first line of equation (36), and the diagrams of Fig-
ure 2c for ζ∗N (i), we obtain the Pauli expansion of bN (m, i)

shown in Figure 4b. We see that the diagrams for bN (m, i)
are made of two parts. We also see that, while aN (m, i)
differs from 0 for Qm = Qi only (due to momentum con-
servation included in the Pauli scatterings), we must have
Qm = Qi = Q0 for bN (m, i) to differ from zero, since
ζN (m) is zero for Qm �= Q0, as previously shown.

Using equations (28) and (35), we end with a recursion
relation for AN (m, i) which reads

AN (m, i) = aN (m, i) +N bN (m, i)

+
FN−2

FN
N(N − 1)

∑

nj

λmj00λ00nj AN−2(n, i). (37)

3.2.2 Determination of AN(m, i) using AN−2(n, i)

As aN(m, i) �= 0 for Qm = Qi, while bN (m, i) �= 0 imposes
Qm = Qi = Q0, we divide AN (m, i) into a contribution
which exists whatever Qi is and a contribution which only
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Fig. 4. (a): Diagrammatic representation of bN(m, i) given by the first equation (36). (b): Pauli diagrams for bN (m, i), obtained
by inserting the diagrams of Figure 2c for ζ∗ into Figure 4a. bN (m, i) is made of a set of disconnected diagrams, with 0, 1,
2, 3, . . . Pauli scatterings. One part always has a δm0 factor, the other part having a λm000 factor, which makes the roles played
by (m, i) dissymetrical. The omitted exciton indices at the end of the lines, are always 0. Figure 4b is a simple visualization of
the second equation (36).

exists when Qi is equal to the sea exciton momentum Q0.
This leads to

AN (m, i) = αN (m, i) +N βN(m, i), (38)

where αN (m, i) and βN (m, i) now obey

αN (m, i) = aN (m, i)

+
FN−2

FN
N(N − 1)

∑

nj

λmj00λ00nj αN−2(n, i), (39)

βN (m, i) = bN(m, i)

+
FN−2

FN
(N − 1)(N − 2)

∑

nj

λmj00λ00nj βN−2(n, i).

(40)

a) Part of AN (m, i) which exists whatever Qi(= Qm) is

The part of AN (m, i) which exists for any exciton i is
αN (m, i). Its diagrammatic representation, obtained from

the iteration of the recursion relation (39), is shown in Fig-
ure 5. (In order to get rid of the 2 appearing in aN (m, i),
we have used λmn0i = λmni0.) Equation (32) for aN (m, i)
leads to write the solution of equation (39) as

αN (m, i) =
N∑

p=0

(−1)p FN−p

FN

N !
(N − p)!

Z(p)(m, i), (41)

where Z(p)(m, i) obeys the recursion relation

Z(p)(m, i) = ẑ(p)(m, i) +
∑

nj

λmj00 λ00nj Z
(p−2)(n, i),

(42)
with ẑ(0) = δmi, while ẑ(p�=0)(m, i) = 2z(p)(m, i). As shows
Figure 5, Z(p)(m, i) is represented by a sum of zigzag di-
agrams with p Pauli scatterings alternatively right, left,
right, . . . , the index m being always at the left bottom,
while i can be at all possible places on the right. Z(p)(m, i)
thus contains (p+1) diagrams which reduce to one, namely
Z(0)(m, i) = δmi, when p = 0.

From Figure 5 we also see that αN (m, i) contains as
many N ’s as λ’s so that it ultimately depends on (N,λ)’s
through η only.
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Fig. 5. Pauli diagrams for the part αN(m, i) of the scalar product AN(m, i) which exists even if Qm = Qi �= Q0 as obtained
from the recursion relation (39). They are made of zigzag diagrams with Pauli scatterings put alternatively right, left, right, . . . ,
the index m staying at the left bottom, while i runs in all possible positions on the right. This figure is a simple visualization
of equation (41).

b) Part of AN (m, i) which exists for Qi(= Qm) = Q0 only

The part of AN (m, i) which only exists when the excitons i
and m have the sea exciton momentum, is N βN (m, i).
The diagrammatic representation obtained from the iter-
ation of the recursion relation (40) for βN is shown in
Figure 6. Using equations (26, 36), its solution reads

βN (m, i) =
N−1∑

p=0

(−1)p FN−1−p

FN

(N − 1)!
(N − 1 − p)!

×
p∑

q=0

z(q)(m, 0) z(p−q)∗(i, 0), (43)

which just corresponds to the diagrams of Figure 6.
These diagrams are made of two parts. We also see that
βN (m, i) contains as many N ’s as λ’s so that βN (m, i),
like αN (m, i), is an η function.

c) N dependence of AN (m, i)

If we now come back to the expression (38) for AN (m, i),
we see that, when Qm = Qi �= Q0, βN (m, i) = 0, so
that the N ’s in AN (m, i) simply appear through the η’s
of αN (m, i). On the opposite, AN (m, i) contains an ex-
tra prefactor N when βN (m, i) �= 0, i.e., when Qm =
Qi = Q0: This extra N is the memory of the bosonic

enhancement found for the dressed exciton i = 0, which
also exists for an exciton i convertible into an exciton 0
by Pauli scatterings with the sea excitons, i.e., an exciton
with Qi = Q0.

From a mathematical point of view, this extra N
is linked to the topology of the diagrams representing
AN (m, i). As in standard Feynman diagrams for which
superextensive terms are linked to disconnected processes,
we here see that an extra factor N appears in the part of
AN (m, i) corresponding to diagrams which are made of
two parts.

To conclude, we can say that the procedure used here
to calculate AN (m, i) leads to Pauli diagrams which are
actually quite simple: The part of AN (m, i) which exists
for any Qm = Qi, is made of all connected diagrams
with m at the left bottom and i at all possible places
on the right, the exciton lines being connected by Pauli
scatterings put in zigzag right, left, right. . . (see Fig. 5).
AN (m, i) has an additional part when the excitonsm and i
have a momentum equal to the sea exciton momentum Q0.
This additional part is made of all possible Pauli dia-
grams made of two parts, m staying at the left bottom
of one part, while i stays at the right bottom of the other
part, the exciton lines being connected by Pauli scatter-
ings in zigzag right, left, right. . . for the m part, and left,
right, left. . . for the i part (see Fig. 6). As a direct conse-
quence of the topology of these disconnected diagrams, an
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Fig. 6. Pauli diagrams for the part βN (m, i) of the scalar product AN(m, i) which exists for Qm = Qi = Q0 only, as obtained
from the iteration of the recursion relation (40). βN (m, i) is made of disconnected diagrams, the two parts being zigzag diagrams
right, left, right, . . . for the part with m at the left bottom, and left, right, left, . . . for the part with i at the right bottom.
This figure is a simple visualization of equation (43).

extra factor N then appears in AN (m, i). This factor N
is physically linked to the well known bosonic enhance-
ment which, for composite excitons, exists not only for an
exciton identical to a sea exciton, but also for any exci-
ton which can be transformed into a sea exciton by Pauli
scatterings with the sea.

Although this result for the scalar product of (N + 1)-
exciton states, with N of them in the same state 0, is
nicely simple at any order in Pauli interaction, it does not
leave us completely happy. Indeed, while, in the discon-
nected diagrams the m and i indices play similar roles,
their roles in the diagrams which exist even if Qi �= Q0,
are dissymmetric, which is not at all satisfactory since
AN (m, i) = [AN (i,m)]∗. This dissymmetry can be traced
back to the way we have calculated AN (m, i). It is clear
that equivalences between Pauli diagrams must exist in or-
der to restore the intrinsic (m, i) symmetry of AN (m, i).
In the next part, we are going to derive some equivalent
Pauli diagrams for AN (m, i). This will lead us to identify
the intrinsic exchange structure betweenN excitons which
exists “behind” these Pauli diagrams, namely the skeleton
diagrams. These skeleton diagrams, presented in the last
part of this work, are in fact the appropriate diagrams for
the exchange part of our many-body theory for interacting
excitons.

4 Other Pauli diagrams for AN(m, i)

In order to have some ideas on which kinds of Pauli di-
agrams can be equivalent, let us first derive two other
diagrammatic representations of AN (m, i) based on re-
cursion relations between AN (m, i) and AN−2(m, j), or
AN−2(n, j), instead of AN−2(n, i).

4.1 Pauli diagrams using AN−2(m, j)

To get this recursion relation, we must keep Bm in the
calculation of ÂN (m, i) defined in equation (30). For that,
we use [BN

0 , B
†
i ] instead of [Bm, B

†N
0 ]; equation (35) is

then replaced by

ÂN (m, i) = N cN (m, i)

+
FN−2

FN
N(N − 1)

∑

nj

λnj00 λ00in AN−2(m, j), (44)

in which we have set

cN (m, i) =
FN−1

FN
δ0i ζN−1(m)

− FN−2

FN
(N − 1)λ000i ζN−2(m). (45)

Using Figure 2b for ζN (m), we get the diagrams for
cN(m, i) shown in Figure 7. When compared to bN (m, i),
we see that the roles played by m and i are exchanged as
well as the relative position of the crosses.

Equation (44) leads to write AN (m, i) given in equa-
tion (28) as

AN (m, i) = αN (m, i) +N βN (m, i), (46)

where αN (m, i) and βN (m, i) now obey

αN (m, i) = aN(m, i)

+
FN−2

FN
N(N − 1)

∑

nj

λnj00 λ00in αN−2(m, j), (47)
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Fig. 7. Pauli diagrams for cN (m, i) defined in equation (45). This cN (m, i) appears instead of bN (m, i) when AN(m, i) is written
in terms of AN−2(m, j) instead of AN−2(n, i). As bN (m, i), cN (m, i) is made of disconnected diagrams. At each order, it contains
two terms, one with a δi0 factor, the other with a λ000i factor.

Fig. 8. Diagrammatic representation of the βN (m, i) part of AN(m, i) which exists for Qm = Qi = Q0 only, as it appears
when we use the recursion relation between AN (m, i) and AN−2(m, j), instead of AN−2(n, i). This diagrammatic representation
corresponds to the iteration of equation (48). By inserting the diagrams for cN (m, i), shown in Figure 7, in this Figure 8, it is
straightforward to see that the Pauli diagrams for βN (m, i) are identical to the ones for βN (m, i) shown in Figure 6, at any
order in Pauli scatterings, so that βN (m, i) = βN (m, i).

βN (m, i) = cN (m, i)

+
FN−2

FN
(N − 1)(N − 2)

∑

nj

λnj00 λ00in βN−2(m, j).

(48)

βN (m, i), as βN (m, i), differs from zero for Qm = Qi =
Q0 only. Its recursion relation leads to expand it in terms
of cN−p’s as shown in Figure 8. Using for these cN−p’s
the expansion shown in Figure 7, we immediately find
that βN (m, i) is represented by the same Pauli diagrams
as the ones for βN (m, i), so that βN (m, i) = βN (m, i).
This is after all not surprising because, in them, the roles
played by m and i are symmetrical. From this result, we
conclude that the parts of AN (m, i) which exist even if
Qi = Qm �= Q0 have also to be equal, i.e., we must have
αN (m, i) = αN (m, i).

If we now calculate aN (m, i) not with [Dmi, B
†N
0 ] but

with [BN
0 , Dmi], we find that aN (m, i) can also be rep-

resented by the diagrams of Figure 3c. These diagrams
look very similar to the ones of Figure 3b, except that

the crosses are now in zigzag left, right, left. . . Since the
sets of diagrams (3b) and (3c) represent the same quantity
aN(m, i), while they have to be valid for N = 2, 3, · · · , we
conclude that the relative positions of the crosses must be
unimportant in these Pauli diagrams. We will prove this
equivalence in Section 5.

The iteration of the recursion relation for αN (m, i)
leads to the diagrams of Figure 9. They look like the ones
for αN (m, i), except that i now stays at the right bot-
tom while m moves to all possible positions on the left,
the zigzag for the Pauli scatterings being now left, right,
left. . . This leads to write αN (m, i) as

αN (m, i) =
N∑

p=0

(−1)p FN−p

FN

N !
(N − p)!

Z
(p)

(m, i), (49)

where Z
(p)

(m, i) represents the set of zigzag diagrams of
Figure 9 containing p crosses.

Since αN (m, i) = αN (m, i), we conclude from the ex-
pansions of these two quantities for N = 2, 3, · · · , that
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Fig. 9. Diagrammatic expansion of the αN (m, i) part of AN (m, i) which exists even if Qm = Qi �= Q0, as it appears from
the iteration of the recursion relation between AN(m, i) and AN−2(m, j). These Pauli diagrams look like the ones for αN (m, i),
shown in Figure 5, except for positions of the zigzags which are now left, right, left, . . . , with i staying at the right bottom
and m moving at all possible positions on the left. Since βN (m, i) = βN (m, i), we have αN (m, i) = αN (m, i) for any N ; so that
these Pauli diagrams for αN (m, i) and the ones for αN (m, i) shown in Figure 5, must correspond to the same quantity, at any
order in Pauli scatterings. This will be proved later on.

Fig. 10. Pauli diagrams for dN (m, i) defined in equation (51). This dN(m, i) is the quantity which appears instead of bN (m, i)
when we write AN (m, i) in terms of AN−2(n, j) and not in terms of AN−2(n, i). As bN (m, i), dN (m, i) is made of disconnected
diagrams, with two parts at each order, one having a δm0 factor, the other a δ0i factor.

the zigzag diagrams Z(p)(m, i) and Z
(p)

(m, i) must corre-
spond to the same quantity, for any p.

4.2 Pauli diagrams using AN−2(n, j)

To get this recursion relation, we start as for the one be-
tween AN (m, i) and AN−2(n, i), but we use [BN

0 , B
†
i ] in-

stead of [BN
0 , B

†
j ]. This leads to

ÂN (m, i) = N dN (m, i)

+
FN−2

FN
N(N − 1)

∑

nj

λmj00 λ00ni AN−2(n, j),

(50)

in which we have set

dN (m, i) =
FN−1

FN
δm0 ζ

∗
N−1(i)

− FN−2

FN
(N − 1) δ0i

∑

j

λmj00 ζ
∗
N−2(j). (51)

Using the diagrams of Figure 2c for ζ∗N (i), we find that
dN (m, i) is represented by the diagrams of Figure 10.
Note that dN (m, i) is equal to zero when both m �= 0
and i �= 0, while, for bN (m, i) and cN (m, i), we just
need Qm = Qi �= Q0.

Equation (50) leads to write AN (m, i) as

AN (m, i) = αN (m, i) +N βN (m, i), (52)

where αN (m, i) and βN (m, i) now obey

αN (m, i) = aN (m, i)

+
FN−2

FN
N(N − 1)

∑

nj

λmj00 λ00ni αN−2(n, j),

(53)

βN (m, i) = dN (m, i)

+
FN−2

FN
(N − 1)(N − 2)

∑

nj

λmj00 λ00ni βN−2(n, j).

(54)
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Fig. 11. (a): The two possible representations of the same recursion relation (54) for the βN(m, i) part of AN(m, i) which
exists for Qm = Qi = Q0 only, as they appear when we use the recursion relation between AN(m, i) and AN−2(n, j) instead of
AN−2(n, i). These two representations just result from an up-down symmetry which follows from Figure 1c, since λmnij = λnmji.

(b): Iteration of this recursion relation. The two representations of βN (m, i) shown in Figure 11a have been alternatively used
in order to avoid the crossings of the exciton lines. By inserting in this Figure 11b the diagrams of Figure 10 for dN(m, i), we

see that the Pauli diagrams for βN (m, i) are exactly those of βN (m, i) shown in Figure 6, so that βN(m, i) = βN (m, i).

The recursion relation for βN (m, i) is shown in Fig-
ure 11a and its iteration in Figure 11b. (In it, we have
used the two equivalent forms of this recursion relation
given in Fig. 11a.) If, in these diagrams, we now insert the
diagrammatic representation of dN (m, i) shown in Fig-
ure 10, with the m part alternatively below and above
the i part, we find that βN (m, i) is represented by ex-
actly the same diagrams as the ones for βN (m, i), so that
βN (m, i) = βN (m, i). As a consequence, we must have
αN (m, i) = αN (m, i).

Let us now consider αN (m, i). The iteration of the re-
cursion relation (53) leads to the diagrams of Figure 12a.
If in it, we insert the diagrammatic representation of
aN (m, i) shown in Figure 3b, we get the diagrams of
Figure 12b. Let us stress that it is not enough to use
λ0n00 = λn000 to transform the last third order diagram
of this Figure 12b into the two last third order zigzag di-
agrams, left, right, left, . . . , of αN (m, i). The situation is
even worse for the last fourth order diagram of αN (m, i)
which is totally different from a zigzag diagram. These di-
agrams however have to represent the same quantity at
any order in Pauli scatterings, since, for any N , we have
αN (m, i) = αN (m, i).

Let us now identify the underlying reason for the
equivalence of Pauli diagrams like the ones of Figures 3b
and 3c which represent aN (m, i), or the ones of Fig-
ures 5, 9, 12b which represent the part of AN (m, i) which
exists even if Qm(= Qi) �= Q0. This will help us to under-

stand how these Pauli diagrams really work, and to pick
out the generic diagrams which are “behind” them.

5 Skeleton diagrams

All the Pauli diagrams we found in the preceding sections,
are made of a certain number of exciton lines connected
by Pauli scatterings between two excitons, put in various
positions. It is clear that the value of these diagrams has
to depend on the “in” and “out” exciton states, i.e., the
indices which appear at the right and the left of these
diagrams, but not on the intermediate exciton states over
which sums are taken, these intermediate exciton states
just helping to visualize the precise exchange process at
hand.

5.1 Generalized carrier exchanges

This led us to think that carrier exchanges involving
p = 2, 3, 4, . . . excitons had to appear through general-
ized scatterings defined as

L2

[
m2 i2
m1 i1

]
=

∫
d{r}φ∗m1

(re1 , rh1)φ
∗
m2

(re2 , rh2)

× φi1 (re1 , rh2)φi2 (re2 , rh1), (55)



522 The European Physical Journal B

Fig. 12. (a): Diagrammatic expansion of the αN(m, i) part of AN(m, i) which exists even if Qm = Qi �= Q0, as it appears when
we use the recursion relation between AN(m, i) and AN−2(n, j). These diagrams correspond to the iteration of equation (53).
(b): Pauli diagrams for this αN(m, i) as obtained by inserting the diagrams of Figure 3b for aN(m, i) into Figure 12a. The
zeroth, first and second order Pauli diagrams of αN(m, i) are identical to the ones of αN (m, i) shown in Figure 5. However, at
higher orders, these Pauli diagrams become more and more different. They however have to represent exactly the same quantity,

since, as βN (m, i) = βN (m, i), we must have αN (m, i) = αN (m, i) for any N .

L3




m3 i3
m2 i2
m1 i1



 =
∫
d{r}φ∗m1

(re1 , rh1)φ
∗
m2

(re2 , rh2)

× φ∗m3
(re3 , rh3)φi1 (re1 , rh2)φi2(re3 , rh1)φi3(re2 , rh3),

(56)

L4





m4 i4
m3 i3
m2 i2
m1 i1



 =
∫
d{r}φ∗m1

(re1 , rh1)φ
∗
m2

(re2 , rh2)

× φ∗m3
(re3 , rh3)φ

∗
m4

(re4 , rh4)

× φi1(re1 , rh2)φi2 (re3 , rh1)φi3(re2 , rh4)φi4(re4 , rh3),
(57)

and so on. . . These definitions are in fact transparent if
we look at the skeleton diagrams which represent them in
Figure 13: The excitons of the lowest line (m1, i1) have
the same electron but a different hole, and so on. . . Note
that it is actually possible to represent these generalized
carrier exchanges in various equivalent ways, as shown in
Figure 14 in the case of three excitons. These equivalent
representations simply say that the exciton i1 has the same
electron as the exciton m1 and the same hole as the ex-
citon m2, so that i1 and m1 must be connected by an
electron line while i1 and m2 must be connected by a hole
line.

Fig. 13. Generalized carrier exchanges Lp between p = 2, 3, 4
excitons, as defined in equations (55−57).
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Fig. 14. Various possible representations of the same exchange process between three excitons, corresponding to the integral
of equation (56). In all of them, the exciton m1 is connected to the exciton i1 by an electron line, these excitons (m1, i1) having
the same electron, while it is connected to the exciton i2 by a hole line, the excitons (m1, i2) having the same hole. And so on. . .

Fig. 15. A possible carrier exchange between the excitons
(m, n, p) and (i, j, k), redrawn using the skeleton diagram be-
tween three excitons. The positions of (j, k) are just exchanged.

It is actually possible to represent all carrier exchanges
between N excitons by such skeleton diagrams: The Pauli
scattering between two excitons which appears in our
many-body theory for composite excitons, simply reads
λmnij =

[
L2

(
n
m

j
i

]
+ L2

[
m
n

j
i

])
/2 (see Fig. 1). In the

same way, the carrier exchange between three excitons
shown in Figure 15, is nothing but the skeleton diagram
L3[(m, i); (n, k); (p, j)] in which the positions of j and k
are just exchanged. A similar redrawing can actually be
done for any other carrier exchange we could think of.

Let us now come back to the various Pauli diagrams we
have found in calculating AN (m, i) and understand why

they are indeed equivalent, in the light of these skeleton
diagrams.

5.2 Pauli diagrams with one exciton only different
from 0

Let us start with the simplest of these Pauli diagrams,
namely the zigzag diagram z(p)(m, 0) appearing in Fig-
ure 2, which has p excitons 0 and one exciton m on
its left and (p + 1) excitons 0 on its right. After sum-
mation over the intermediate exciton indices, the final
expression of this Pauli diagram must read as an inte-
gral of φ∗m(re1 , rh1)φ∗0(re2 , rh2) . . . φ∗0(rep+1 , rhp+1) multi-
plied by (p + 1) wave functions φ∗0 with the (rei , rhi)’s
mixed in such a way that the integral is not cut into
two independent integrals (otherwise the Pauli diagram
would not be topologically connected). This is exactly
what Lp+1[(m, 0); (0, 0); · · · ; (0, 0)] does. The possible per-
mutations of the various (re, rh)’s in the definition of Lp+1

show that the position of the m index in the diagrammatic
representation of this carrier exchange is unimportant. As
a consequence, the position of m in the Pauli diagrams
having all the indices but one equal to 0, is unimportant.
The relative position of the crosses in these diagrams is
also unimportant. This is easy to show, just by “sliding”
the carrier exchanges, as explained in Figure 16 in the
case of three excitons. In this figure, we use the fact that
the two carrier exchanges of the Pauli scattering λmnij

reduce to one diagram when two indices on one side are
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Fig. 16. The skeleton diagram for three excitons, with all excitons but one in the same state 0, corresponds to one of the two
equivalent diagrams of the first line of this figure, due to Figure 14; so that it is also half their sum. In the second line, we
have just “slided” the carrier exchanges. In the third line, we use the fact that, when the two indices on one side of a Pauli
scattering are equal, this Pauli scattering, here λn000, corresponds either to an electron exchange or to a hole exchange. The
Pauli diagram (a) of this figure then results from using Figure 1a for λm00n. If we slide the carrier exchanges the other way, we
end with the Pauli diagram (b). Diagram (c) is obtained from (a) by a symmetry up-down which follows from λmnij = λnmji;
and similarly for diagram (d) starting from (b). In the same way, the diagram (e) follows from (a) due to λm00n = λ0m0n, while
the diagram (f) follows from (c) for the same reason. This shows that all Pauli diagrams with only one index different from 0,
correspond to the same skeleton diagram, whatever the positions of m and the Pauli scatterings are, a remarkable result, not
topologically obvious at first.

equal (see Figs. 1d, e). This possibility to “slide” the car-
rier exchange, mathematically comes from the fact that∑

q φ
∗
q(re, rh)φq(re′ , rh′) is just δ(re − re′ )δ(rh − rh′).

5.3 Pauli diagrams with one exciton different from 0
on each side

There are essentially two kinds of such diagrams: Either
the two excitons (m, i) different from 0 have one common
carrier, or they have none. Let us start with the first case.

5.3.1 m and i have one common carrier

Two topologically different skeleton diagrams exist in this
case, depending if the common carrier is an electron or a
hole. They are shown in Figures 17a, b. By “sliding” the
carrier exchanges as done in Figure 17c, we can identify
the set of Pauli diagrams which correspond to the sum of

these two skeleton diagrams (see Fig. 17d). This in partic-
ular shows the identity of the Pauli diagrams which enter
the two diagrammatic representations of aN(m, i) shown
in Figures 3b, c.

5.3.2 m and i have no common carrier

The number of topologically different skeleton diagrams
depends on the number of excitons 0 involved. In the case
of two excitons 0, there is only one such skeleton diagram
(see Fig. 18). By “sliding” the carrier exchanges, we get
the two equivalent Pauli diagrams of this figure. For three
excitons 0, we have the two different skeleton diagrams
shown in Figures 19a, b. They are related by exchanging
the electrons and holes. By sliding the carrier exchanges,
we get the two diagrams of Figure 19c; so that, if we com-
bine these two skeleton diagrams, we end with the two
Pauli diagrams of Figure 19d, which are thus equivalent,
in spite of the position of the crosses.

And so on. . .
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Fig. 17. (a, b): Skeleton diagrams in which the excitons m and i have the same electron (a) or the same hole (b). (c): When
all the other indices are 0, we can slide the carrier exchange one way or the other to identify a skeleton diagram for which all
the indices except one are 0: The upper part thus corresponds to a Pauli diagram with the n index and the crosses for Pauli
scatterings put at any place. (d): If we now add the electron exchange to the hole exchange, in order to get the two parts of the
Pauli scattering, λm0in or λmni0, we end with the two Pauli diagrams of Figures 3b, c for aN(m, i): The two zigzag diagrams
are indeed equal.

Fig. 18. In the case of three excitons, there is only one skeleton diagram in which m and i have no common carrier. If the other
excitons are excitons 0, we can slide the electron exchange to the left to make appearing two Pauli scatterings having equal
indices on one side. Using Figures 1d and 1e, we then find that this skeleton diagram corresponds to the Pauli diagram (a). A
symmetry up-down leads to diagram (b).

5.4 Equivalent representations of the diagrams
appearing in AN(m, i)

By expressing the various Pauli diagrams entering the ex-
pansion of AN (m, i), in terms of skeleton diagrams, it is
now possible to directly prove their equivalence.

Figure 20 shows the set of transformations which al-
lows to go from the last third order diagrams of αN (m, i),
shown in Figure 12b, to the two zigzag Pauli diagrams of
αN (m, i), with i at the two upper positions.

The transformation of the last fourth order diagram for
αN (m, i) into the two missing zigzag diagrams of αN (m, i)
is somewhat more subtle. For the interested reader, it is
explained in details in the caption of Figure 21.

6 Conclusion

In this paper, we have calculated the scalar product
of (N + 1)-exciton states with N of them in the same
state 0. This scalar product is far from trivial due to
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Fig. 19. (a, b): In the case of four excitons, there are two different skeleton diagrams in which the excitons m and i have no
common carrier. (c): Starting from the skeleton diagram (a), we can slide the carrier exchanges one way or the other, to make
appearing Pauli scatterings with two excitons 0 on one side. By combining the two skeleton diagrams (a) and (b), we generate
the two parts of λn00i (or λm00n): This produces the two Pauli diagrams (d), which just differ by the position of the zigzags,
right, left, right or left, right, left.

many-body effects induced by “Pauli scatterings” which
originate from the composite nature of the excitons. As
a result, these scalar products appear as expansions in
η = NVX/V , where VX and V are the exciton and sample
volumes, with possibly some additional factors N .

In order to understand the physical origin of these
additional N ’s — which will ultimately differentiate su-
perextensive from regular terms — we have introduced
the concept of “exciton dressed by a sea of N excitons 0”,

|ψ(N)
i 〉 =

BN
0 B

†N
0

〈v|BN
0 B

†N
0 |v〉 B

†
i |v〉.

If the excitons are replaced by true bosons, the excitons
i �= 0 are unaffected by the sea, while the exciton 0 is
enhanced by a factor N . If we drop all Pauli interactions
between the exciton i and the sea, the operator in front
of B†

i reduces to an identity, so that all excitons i are
unchanged. If we now take into account Pauli interac-

tions between composite excitons properly, we find that
all dressed excitons i gain a contribution on other exci-
tons m �= i, due to possible carrier exchanges between the
exciton i and the sea. Moreover, we find that a N bosonic
enhancement exists not only for the exciton i = 0 — which
is, after all, rather satisfactory since excitons are not so
far from bosons — but also for any exciton i which can be
transformed into a sea exciton by carrier exchanges, i.e.,
any exciton i having a center of mass momentum equal to
the one of a sea exciton.

In order to understand the carrier exchanges be-
tween N excitons — which make the scalar products of
N -exciton states so tricky —, we have first used “Pauli
diagrams”, i.e., diagrams written in terms of Pauli scatter-
ings between two excitons. With them, we have succeeded
in generating a diagrammatic representation of the scalar
products of (N + 1)-exciton states with N of them in the
same state 0, at any order in Pauli interaction.
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Fig. 20. In this figure, we show how to transform the last third order Pauli diagram of αN(m, i) appearing in Figure 12b, into
the two zigzag diagrams of Figure 5c for αN (m, i), which are reproduced at the bottom of this figure. We first use the fact that
λn0p0 = λ0np0 to get an equivalent representation of this diagram. We then note that the upper and lower crosses have two
identical excitons on one side. By using Figures 1d, e for the two upper crosses, and Figures 1a, b for the middle cross, we get
the two diagrams of the second line of this figure. The diagrams of the next line just follow by sliding the carrier exchanges. In
them, we now identify Pauli scatterings which have identical excitons on one side. These two diagrams can be used to generate
the two parts of the Pauli scattering λq00i. The sum of the last two zigzag diagrams simply results from λq00i = λq0i0.

This diagrammatic representation is actually not
unique, which makes it quite unsatisfactory. Although the
one we first give is simple to memorize, due to its nice
topology, more complicated ones, obtained from other pro-
cedures to calculate the same scalar product, are equally
good in the sense that they lead to the same correct result.

In order to understand the equivalence between these
various Pauli diagrams, we have been led to introduce
“skeleton diagrams” which correspond to carrier ex-
changes between more than two excitons. Their appear-
ance in the scalar products of N -exciton states is actually
quite reasonable because, even if we can calculate these
scalar products in terms of Pauli scatterings between two
excitons only, Pauli exclusion is originally N -body: When
a new exciton is added, its carriers must be in states differ-
ent from the ones of all previous excitons. The Pauli scat-
terings between two excitons generated by our many-body
theory for interacting composite bosons, are, for sure,
mathematically convenient to calculate many-body effects

between excitons at any order in carrier exchanges. It is
however reasonable to find that a set of such Pauli scatter-
ings, which correspond to carrier exchanges between more
than two excitons, finally read in terms of these skeleton
diagrams, designed to describe multiple exchanges.

The present work is restricted to scalar products of
N -exciton states in which all but one are in the same
state 0. In physical effects involvingN excitons, more com-
plicated scalar products of course enter. Their calculation
will be presented in a forthcoming publication. The de-
tailed study presented here, is however quite useful: Be-
side the skeleton diagrams this study led us to identify,
it allowed us to point out one very important characteris-
tic of these scalar products, linked to the topology of their
diagrammatic representation — also present in more com-
plicated situations: For example, in the case of two exci-
tons (i, j) dressed by a sea ofN excitons 0 in the same way
as equation (12), a bosonic enhancement exists not only
for Qi = Qj = Q0, but also for Qi + Qj = 2Q0, because
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Fig. 21. The transformation of the quite ugly fourth order Pauli diagram appearing in αN (m, i) and reproduced in (a), into
the two zigzag diagrams of αN (m, i) reproduced in (b), is actually quite subtle. In diagram (a), all the Pauli scatterings except
λnpq0 have two indices 0 on one side. This allows to transform twice the diagram (a) into the sum of diagrams (c) and (d), using
Figures 1a, b and Figures 1d, e. Diagram (c) is nothing but diagram (e) as easy to see by following the various electron and hole
lines labelled differently, in order to easily check that excitons with identical electrons (or holes) are indeed connected. We then
slide the carrier exchange to produce diagram (f). This diagram has Pauli scatterings with two excitons 0 on one side, except
the one between (j, k) and (i, 0). By doing the same for diagram (d), we generate the two parts of the Pauli scattering λjk0i.
The two diagrams shown in (b) then simply follow from λjk0i = λjki0.

this last condition is enough for the two excitons (i, j)
to possibly transform themselves into two excitons 0 by
carrier exchanges; the corresponding process, represented
by topologically disconnected diagrams, appears with an
extra factor N , which is the signature of this topology.
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Quantique (Hermann, Paris, 1973)


